《大学物理》教学大纲

1. 课程描述

课程代码: 941005-6

课程名称: 大学物理 B

课程英文名称: University Physics

课程性质: 必修课

总学时: 128 学时(分上、下两个学期各 64 学时)

学分: 3.5 学分×2

修读学期: 2、3

授课对象: 地学部本科生

课程简介:

大学物理 B(I、II)是为我校非物理类理工科专业本科生开设的必修课,分两个学期教学,一般为大一的下学期和大二的上学期。大学物理课程的知识体系包含力学、热学、电磁学、振动与波、光学及近代物理六个部分。通过本课程的学习,学生能够了解物质的基本结构、基本运动形式及相互作用规律,理解物理学的基本概念和基本理论,获得用物理学原理解决问题的基本方法的训练。进一步地,本课程有助于培养学生现代科学自然观、宇宙观和辩证唯物主义世界观。学好大学物理课,是本科学生提高科学素质、获得科学思维方法和培养科学研究能力的重要途径。

课程目标:

通过本课程的教学,应使学生了解物质的基本结构、基本运动形式及相互作用规律,理解物理学的研究范畴、基本概念和基本理论,获得用物理学原理解决实际问题的基本方法的训练。进一步地,通过教学,应使学生逐步形成科学的自然观、宇宙观和辩证唯物主义世界观,提高科学素质、获得科学思维方法和自主分析问题、解决问题的能力。

选用教材及指定参考书:

教材:《大学物理学》(第二版),高等教育出版社,2012年,张铁强 主编参考书:《大学物理学》(第三版),清华大学出版社,2018年,张三慧 编著《新工科大学物理》,上海交通大学出版社,2020年,李翠莲 主编

2. 各章节内容及学时分配

模块	章	教学目标	学时 分配
力学	机械运动的描述	了解质点与刚体的概念;掌握位置矢量、速度矢量、加速度矢量、角位置、角速度、角加速度的概念。	4
	质点运动的 基本定律	掌握牛顿运动定律及其基本应用;了解力学相对性原理;掌握 质点和质点系的动量定理及动量守恒定律;理解角动量概念和角动 量守恒定律;掌握做功的计算方法、动能定理、保守力的功、势能 和机械能守恒定律。	6
	刚体的定轴 转动	理解质心概念和质心运动定理;掌握力对轴的力矩、刚体定轴 转动定律、转动惯量概念、定轴转动的角动量定理和角动量守恒定	6

		律,了解进动的概念;掌握刚体定轴转动的动能定理和机械能守恒定律;了解对称性与守恒定律的关系。	
热学	气体动理论	理解平衡态概念和热力学第零定律;掌握理想气体状态方程; 了解麦克斯韦气体分子速率分布律,理解三种统计速率;掌握理想 气体的压强和温度公式;理解自由度、理想气体的内能和能量按自 由度均分定理;了解气体分子的平均碰撞频率和平均自由程概念。	6
	热力学基础	理解准静态过程、内能、热量和功的概念;掌握热力学第一定律及其在典型热力学过程中的应用;理解循环过程、卡诺循环、热机效率及制冷系数概念;了解热力学第二定律、热力学熵、熵增加原理及玻尔兹曼熵关系式。	8
电磁学	静电场	掌握库仑定律;掌握电场强度概念;掌握电场强度的叠加原理及其应用;理解静电场中的高斯定理及其应用;了解电介质电极化强度和电位移矢量概念;理解静电场环路定理、电场的能量、电场强度和电势梯度的关系及静电场中导体的静电平衡条件;掌握电势概念、电势的叠加原理及电容器电容的计算方法。	12
	稳恒磁场	理解磁感应强度概念;理解毕奥-萨伐尔定律、磁场的叠加原理、磁通量概念及磁场的高斯定理;理解磁场与载流导线作用的安培定律;理解运动电荷在磁场中受力特征;理解安培环路定理及其简单应用;了解顺磁质、抗磁质和铁磁质的特征。	10
	电磁感应	掌握法拉第电磁感应定律和楞次定律;理解动生电动势、感生电动势、自感和互感、磁场的能量概念;了解位移电流概念和全电流环路定律;了解麦克斯韦方程组的积分形式。	6
振动和波	振动	掌握简谐运动动力学方程及其特征量;掌握简谐运动的旋转矢量表示法;理解简谐运动能量特征;理解同方向、同频率简谐振动的合成及同方向、频率相近的简谐振动的合成特征;了解振动方向垂直、同频率简谐振动的合成及振动方向垂直、不同频率简谐振动的合成特征;了解阻尼振动、受迫振动和共振现象。	6
	机械波	掌握波动的基本概念及平面简谐波的波函数;理解波动方程和 波的叠加原理;掌握驻波方程和半波损失概念;理解弦线上驻波的 特征;理解波的能量、能流和能流密度概念;理解惠更斯原理、波 的衍射、反射与折射特征;理解多普勒效应;了解声强和声强级概 念。	6
	电磁波	理解电磁波的能量传播特征及电偶极子辐射电磁波的特征;了解平面电磁波波动方程、平面电磁波的性质及电磁波谱。	4
光学	几何光学成 像原理	掌握几何光学基本定律;掌握折射球面近轴成像光路、球面反射镜近轴成像光路及薄透镜近轴成像光路的计算方法;了解典型光学仪器的特征。	6
	光的干涉	掌握光程和光程差概念;理解光干涉的相干条件及获得相干光的方法;了解空间相干性和时间相干性;掌握杨氏双缝干涉、薄膜干涉、劈尖干涉及牛顿环干涉的条纹性质;理解劳埃德镜实验的特征;了解迈克尔逊干涉仪。	6

	光的衍射	掌握光栅衍射的主极大条件;理解惠更斯-菲涅尔原理;理解夫 琅禾费单缝衍射和圆孔衍射的条纹性质;了解光学仪器的分辨本 领;了解伦琴射线、劳厄实验及布拉格公式。	6
	光的偏振	理解自然光、部分偏振光及偏振光的概念;理解马吕斯定律和布儒斯特定律;了解光的双折射现象、偏振光干涉现象及人为双折射现象。	4
近代物理初步	相对论基础	掌握狭义相对论的基本假设;掌握狭义相对论同时的相对性、运动时钟变慢及运动杆缩短效应;理解洛仑兹坐标变换;理解相对论质量和速度的关系、相对论动力学基本方程及相对论能量;了解相对论能量动量关系;了解迈克尔逊-莫雷实验,。	6
	波粒二象性	理解热辐射概念及黑体辐射的实验规律;掌握普朗克能量子假说;掌握光电效应、康普顿效应及德布罗意假设;理解电子衍射实验、玻尔的原子理论及海森堡不确定关系;了解夫兰克-赫兹实验、里德伯公式及对应原理。	8
	量子力学基础	掌握量子力学波函数概念及波函数的统计解释;掌握一维无限深势阱的能级计算方法;理解薛定谔方程和定态薛定谔方程;理解氢原子中电子的状态描述;理解斯特恩-盖拉赫实验、电子的自旋、泡利不相容原理及原子核外的电子排布特征;了解势垒、隧道效应和线性谐振子。	6

执笔人: 倪牟翠

编写日期: 2020年6月15日